REFRAKTOMETER DAN POLARIMETRI

1. Rela Religia A.
2. Rima Sundari
3. Ririn Puji A.
4. Risti Intan P

A. REFRAKTOMETER





Refraktometer adalah alat yang digunakan untuk mengukur kadar/ konsentrasi bahan terlarut. Misalnya gula, garam, protein, dsb. Prinsip kerja dari refraktometer sesuai dengan namanya adalah memanfaatkan refraksi cahaya. Refraktometer ditemukan oleh Dr. Ernest Abbe seorang ilmuan dari German pada permulaan abad 20 (Anonim, 2010).
            Indeks bias adalah perbandingan kecepatan cahaya dalam udara dengan kecepatan cahaya dalam zat tersebut. Indeks bias berfungsi untuk identifikasi zat kemurnian, suhu pengukuran dilakukan pada suhu 20oC dan suhu tersebut harus benar-benar diatur dan dipertahankan karena sangat mempengaruhi indeks bias. Harga indeks bias dinyatakan dalam farmakope Indonesia edisi empat dinyatakan garis (D) cahaya natrium pada panjang gelombang 589,0 nm dan 589,6 nm. Umumnya alat dirancang untuk digunakan dengan cahaya putih. Alat yang digunakan untuk mengukur indeks bias adalah refraktometer ABBE. Untuk mencapai kestabilan, alat harus dikalibrasi dengan menggunakan plat glass standart (Anonim, 2010).
            Refraktometer Abbe adalah refraktometer untuk mengukur indeks bias cairan, padatan dalam cairan atau serbuk dengan indeks bias dari 1,300 sampai 1,700 dan persentase padatan 0 sampai 95%, alat untuk menentukan indeks bias minyak, lemak, gelas optis, larutan gula, dan sebagainnya, indeks bias antara 1,300 dan 1,700 dapat dibaca langsung dengan ketelitian sampai 0,001 dan dapat diperkirakan sampai 0,0002 dari gelas skala di dalam (Mulyono, 1997).
            Pengukurannya didasarkan atas prinsip bahwa cahaya yang masuk melalui prisma-cahaya hanya bisa melewati bidang batas antara cairan dan prisma kerja dengan suatu sudut yang terletak dalam batas-batas tertentu yang ditentukan oleh sudut batas antara cairan dan alas.

B. POLARIMETRI


Polarimetri adalah suatu metoda analisa yang berdasarkan pada pengukuran daya putaran optis dari suatu larutan. Daya putaran optis adalah kemampuan suatu zat untuk memutar bidang getar sinar terpolarisir. Sinar terpolarisir merupakan suatu sinar yang mempunyai satu arah bidang getar dan arah tersebut tegak lurus terhadap arah rambatannya. Senyawa optis aktif adalah senyawa yang dapat memutar bidang getar sinar terpolarisir. Zat yang optis ditandai dengan adanya atom karbon asimetris atau atom C kiral dalam senyawa organik, contoh : kuarsa ( SiO2 ), fruktosa.
Polarimeter dapat digunakan untuk :
1.      Menganalisa zat yang optis aktif
2.      Mengukur kadar gula
3.      Penentuan antibiotik dan enzim
Syarat senyawa yang bisa dianalisa dengan polarimetri adalah :
1.      Memiliki struktur bidang kristal tertentu ( dijumpai pada zat padat)
2.     Memiliki struktur molekul tertentu atau biasanya dijumpai pada zat cair. Struktur molekul adalah struktur yang asimetris,  seperti pada glukosa.
Prinsip dasar polarimetris ini adalah pengukuran daya putar optis  suatu zat yang menimbulkan terjadinya putaran bidang getar sinar terpolarisir. Pemutaran bidang getar sinar terpolarisir  oleh senyawa optis aktif ada 2 macam, yaitu :
1.      Dexro rotary (+), jika arah putarnya ke kanan atau sesuai putaran jarum jam.
2.      Levo rotary (-), jika arah putarnya ke kiri atau berlawanan dengan putaran jarum jam.
Jenis – jenis polarimeter :
1.      Spektropolarimeter
Merupakan satu jenis polarimeter yang dapat digunakan untuk mengukur aktifitas optik dan besarnya penyerapan. Pada alat ini mula – mula sinar berada dari lampu akan melalui suatur monokromator dan melewati suatu polarisator untuk menghasilkan sinar terpolarisir. Polarisator ini berhubungan langsung dengan modulator yang berguna untuk menghatur tingkat sinar yang terpolarisasi secara elektris yang dapat diamati pada servo amplifier. Kemudian sinar melewati sampel dan analisator sebelum mencapai tabung pengadaan sinar, dan dapat dilakukan dengan pengamatan pada indikator.
2.      Optical rotatory dispersion ( ORD )
Alat ini merupakan modifikasi dari spektropolarimeter, prinsipnya sama dengan spektropolarimeter, tetapi terdapat perbedaan yaitu pada ORD ini sinar diatur berdasarkan tingkat polarisasinya, yaitu pada frekuensi 12 Hz oleh motor driven yang menyebabkan polarisator bergerak – gerak dan membentuk sudut 1 atau 2 derajat atau lebih. Selain itu servoamplifiernya hanya dapat merespon pada frekuensi 12 Hz sehingga servomotor akan mengatur analisator secara kontinu dan servomotor juga memposisikan penderkorder untuk menghasilkan suatu grafik.
3.      Circular Dichroism Apparatus ( CDA )
CDA ini merupakan modifikasi dari spektrofotometer konfensional yang digunakan untuk menentukan dua serapan atau absorban. Nilai polarisasi sekular ini dapat ditentukan dalam 2 langkah, yaitu yang pertama sinar harus mengalami polarisasi bidang dan kedua yaitu sinar terpolarisasi tersebut diubah menjadi komponen terpolarisasi sirkular kanan dan sirkular kiri. Untuk mengubah komponen menjadi terpolarisasi sekular kanan dan kiri, dapat digunakan tiga tipe alat, yaitu the Fresnel rhomb, modulator pockets elektro-optik dan modulator tekanan photo-elastic.
4.      Saccarimeter
Alat ini hanya dapat digunakan untuk menentukan kadar gula.
Sinar mempunyai arah getar atau arah rambat kesegala arah dengan variasi warna dan panjang gelombang yang dikenal dengan sinar polikromatis. Untuk menghasilkan sinar monokromatis, maka digunakan suatu filter atau sumber sinar tertentu. Sinar monokromatis ini akan melewati suatu prisma yang terdiri dari suatu kristal yang mempunyai sifat seperti layar yang dapat menghalangi jalannya sinar, sehingga dihasilkan sinar yang hanya mempunyai satu arah bidang getar yang disebut sebagai sinar terpolarisasi. Rotasi spesifik disimbolkan dengan [α]   sehingga dapat dirumuskan :
[α]    = α / dc
Dimana :   
α = besar sudut yang terpolarisasi oleh suatu larutan dengan konsentrasi c gram zat terlarut per mL larutan.
d = merupakan panjang lajur larutan ( dm )
c = merupakan konsentrasi ( gram/mL ).
Karena panjang gelombang yang sering digunakan adalah 589,3 nm yaitu garis D lampu natrium dan suhu standar 20oC, maka [α] ditulis menjadi [α].
Hal-hal yang dapat mempengaruhi sudut putar suatu larutan adalah sebagai berikut :
1.      Jenis zat.
Masing – masing zat memberikan sudut putaran yang berbeda terhadap bidang getar sinar terpolarisir.
2.      Panjang lajur larutan dan panjang tabung.
Jika lajur larutan diperbesar maka putarannya juga makin besar.
3.      Suhu.
Makin tinggi suhu maka sudut putarannya makin kecil, hal ini disebabkan karena zat akan memuai dengan naiknya suhu sehingga  zat yang berada dalam tabung akan berkurang.
4.      Konsentrasi zat
Konsentrasi sebanding dengan sudut putaran, jika konsentrasi dinaikkan maka putarannya semakin besar.
5.      Jenis sinar ( panjang gelombang)
Pada panjang gelombang yang berbeda zat yang sama mempunyai nilai putaran yang berbeda.
6.      Pelarut
Zat yang sama mempunyai nilai putaran yang berbeda dalam pelarut yang berbeda.
Komponen-komponen alat polarimeter adalah:
1.      Sumber Cahaya monokromatis
Yaitu sinar yang dapat memancarkan sinar monokromatis. Sumber cahaya yang digunakan biasanya adalah lampu D Natrium dengan panjang gelombang 589,3 nm. Selain itu juga dapat digunakan lampu uap raksa dengan panjang gelombang 546 nm.
2.      Lensa kolimator
Berfungsi mensejajarkan sinar dari lampu natrium atau dari sumber cahaya sebelum masuk ke polarisator.
3.      Polarisator dan Analisator.
Polarisator berfungsi untuk menghasilkan sinar terpolarisir. Sedangkan analisator berfungsi untuk menganalisa sudut yang terpolarisasi. Yang digunakan sebagai polarisator dan analisator adalah prisma nikol. Prisma setengah nikol merupakan alat untuk menghasilkan bayangan setengah yaitu bayangan terang gelap dan gelap terang.                                                                                                   
4.      Skala lingkar.
Merupakan skala yang bentuknya melingkar dan pembacaan skalanya dilakukan jika telah didapatkan pengamatan tepat baur-baur.
5.      Wadah sampel ( tabung polarimeter )
Wadah sampel ini berbentuk silinder yang terbuat dari kaca yang tertutup dikedua ujungnya berukuran besar dan yang lain berukuran kecil, biasanya mempunyai ukuran panjang 0,5 ; 1 ; 2 dm. Wadah sampel ini harus dibersihkan secara hati-hati dan tidak bileh ada gelembung udara yang terperangkap didalamnya.
6.      Detektor.
Pada polarimeter manual yang digunakan sebagai detektor adalah mata, sedangkan polarimeter lain dapat digunakan detektor fotoelektrik.
Sinar monokromatis dari lampu natrium akan melewati lensa kolimator sehingga berkas sinarnya dibuat paralel. Kemudian dipolarisasikan oleh prisma kalsit atau prisma nikol polarisator. Sinar yang terpolarisasi akan diteruskan keprisma setengah nikol untuk mendapatkan bayangan setengah dan akan melewati sampel yang terdapat dalam tabung kaca yang tertutup pada kedua ujungnya yang panjangnya diketahui. Sampel tersebut akan memutar bidang getar sinar terpolarisasi ke kanan atau ke kiri dan dianalisa oleh analisator. Besarnya sudut putaran oleh sampel dapat dilihat pada skala lingkar yang diiamati dengan mata.





TURBIDIMETER dan PH METER

Anggota Kelompok :
1. Rela Religia A
2. Rima Sundari
3. Ririn Puji A.
4. Risti Intan P.

TURBIDIMETER


Turbidimeter merupakan sifat optik akibat dispersi sinar dan dapat dinyatakan sebagai perbandingan cahaya yang dipantulkan terhadap cahaya yang tiba. Intensitas cahaya yang dipantulkan oleh suatu suspensi adalah fungsi konsentrasi jika kondisi-kondisi lainnya konstan. Turbidimeter merupakan salah satu alat yang berfungsi untuk mengetahui atau mengukur tingkat kekeruhan air.
Standar pengukuran Kekeruhan dimulai tahun 1970-an ketika nephelometric turbidimeter dikembangkan yang menentukan kekeruhan dengan cahaya. tersebar di sebuah sudut 90E dari balok insiden). Sebuah sudut deteksi 90E adalah dianggap paling sensitif terhadap variasi dalam ukuran partikel. Nephelometry telah diadopsi oleh Standard Metode sebagai cara pilihan untuk mengukur kekeruhan karena metode's sensitivitas, presisi, dan penerapan atas berbagai ukuran partikel dan konsentrasi. Metode nephelometric dikalibrasi menggunakan suspensi formazin polimer seperti bahwa nilai dari 40 unit nephelometric (NTU) adalah kira-kira sama dengan 40.
Prinsip umum dari alat turbidimeter adalah sinar yang datang mengenai suatu partikel ada yang diteruskan dan ada yang dipantulkan, maka sinar yang diteruskan digunakan sebagai dasar pengukuran(Day and Underwood, 2002).

METODE DAN JENIS TURBIDIMETER 
Metode pengukuran turbiditas dapat dikelompokkan dalam tiga golongan, yaitu :
1.      Pengukuran perbandingan intensitas cahaya yang dihamburkan terhadap intensitas cahaya yang datang
2.      Pengukuran efek ekstingsi, yaitu kedalaman dimana cahaya mulai tidak tampak di dalam lapisan medium yang keruh.
3.      Instrumen pengukur perbandingan Tyndall disebut sebagai Tyndall meter. Dalam instrumen ini intensitas diukur secara langsung. Sedang pada nefelometer, intensitas cahaya diukur dengan larutan standar.
Ada tiga jenis turbidimeters umum yang dipakai sekarang. Ada yang disebut sebagai bench top, portable, and on-line instruments. Bench top dan portabel turbidimeters Bench digunakan untuk menganalisa sampel ambil atas unit Bench biasanya digunakan sebagai laboratorium stasioner instrumen dan tidak dimaksudkan untuk menjadi portabel. On-line instrumen biasanya dipasang di lapangan dan terus menerus menganalisa aliran sampel tumpah off dari proses unit. sampling Pengukuran dengan unit-unit ini membutuhkan kepatuhan yang ketat untuk pabrik sampling prosedur untuk mengurangi kesalahan dari gelas kotor, udara dalam gelembung sampel, dan partikel yang menetap. Penggunaan alat turbidimeter ini yaitu menyimpan sampel dan standar pada botol kecil/botol sampel. Sebelum alat digunakan terlebih dahulu harus diset, dimana angka yang tertera pada layar harus 0 atau dalam keadaan netral, kemudian melakukan pengukuran dengan menyesuaikan nilai pengukuran dengan cara memutar tombol pengatur hingga nilai yang tertera pada layar pada turbidimeter sesuai dengan nilai standar. Setelah itu sampel dimasukan pada tempat pengukuran sampel yang ada pada turbidimeter, hasilnya dapat langsung dibaca skala pengukuran kekeruhan tertera pada layar dengan jelas. Akan tetapi pengukuran sampel harus dilakukan sebanyak 3 kali dengan menekan tombol pengulangan pengukuran untuk setiap pengulangan agar pengukuran tepat atau valid, dan hasilnya langsung dirata-ratakan
LANGKAH KERJA
1. Mempersiapkan alat dan bahan yang akan digunakan
2. Memasangkan/menyambungkan turbidimeter dengan sumber listrik, diamkan selama 15 menit
3. Larutan standar diletakan pada tempat sample yang ada dalam turbidimeter, lalu melakukan pengukuran dengan menyesuaikan nilai pengukuran dengan cara memutar tombol pengatur hingga nilai yang tertera pada layar pada turbidimeter sesuai dengan nilai standar
4. Sample dimasukan pada tempat pengukuran sampel yang ada pada turbidimeter
5. Membaca skala pengukuran kekeruhan (pengukuran dilakukan 3 kali dengan menekan tombol pengulangan pengukuran untuk setiap pengulangan).




pH METER

pH adalah suatu satuan ukur yang menguraikan derajat tingkat kadar keasaman atau kadar alkali dari suatu larutan. Unit pH diukur pada skala 0 sampai 14. Istilah pH berasal dari “p” lambang matematika dari negatif logaritma, dan “H” lambang kimia untuk unsur Hidrogen. Definisi yang formal tentang pH adalah negatif logaritma dari aktivitas ion Hidrogen. Yang dapat dinyatakan dengan persamaan:
pH = – log [H+]
pH dibentuk dari informasi kuantitatif yang dinyatakan oleh tingkat keasaman atau basa yang berkaitan dengan aktivitas ion Hidrogen. Jika konsentrasi [H+] lebih besar daripada [OH-], maka material tersebut bersifat asam, yaitu nilai pH kurang dari 7. Jika konsentrasi [OH-] lebih besar daripada [H+], maka material tersebut bersifat basa, yaitu dengan nilai pH lebih dari 7.
Pengukuran pH secara kasar dapat menggunakan kertas indicator pH dengan mengamati perubahan warna pada level pH yang bervariasi. Indicator ini mempunyai keterbatasan pada tingkat akurasi pengukuran dan dapat terjadi kesalahan pembacaan warna yang disebabkan larutan sampel yang berwarna ataupun keruh.
Pengukuran pH yang lebih akurat biasa dilakukan dengan menggunakan pH meter. Sistem pengukuran pH mempunyai tiga bagian yaitu elektroda pengukuran pH, elektroda referensi, dan alat pengukur impedansi tinggi.

Pengertia pH meter 
Alat untuk mengukur derajat keasaman.
Sejarah pengukuran pH
Sejarah pengukuran pH suatu larutan dengan menggunakan pH meter sistem elektrik dimulai pada tahun 1906 ketika Max Cremer dalam sebuah penelitiannya menemukan adanya interaksi dari aktivitas ion hidrogen yang dihubungkan dengan suatu sel akan menghasilkan tegangan listrik. Dia menggunakan gelembung kaca yang tipis yang diisi dengan suatu larutan dan dimasukan kedalam larutan yang lain dan ternyata menghasilkan tegangan listrik. Gagasan ini kemudian dikembangkan oleh Firtz Haber dan Zygmunt Klemsiewcz yang menemukan bahwa tegangan yang dihasilkan oleh gelembung kaca tersebut merupakan suatu fungsi logaritmis.
pH meter untuk penggunaan komersial pertama kali diproduksi oleh Radiometer pada tahun 1936 di Denmark dan Arnold Orville Beckman dari Amerika Serikat. Penemuan tersebut dilakukan ketika Beckman menjadi asisten professor kimia di California Institute of Technology, dia mengatakan untuk mendapatkan metoda yang cepat dan akurat untuk pengukuran asam dari jus lemon yang diproduksi oleh California Fruit Growers Exchange (Sunkist). Hasil penemuannya tersebut membawa dia untuk mendirikan Beckman Instruments Company (sekarang Beckman Coulter).
PRINSIP KERJA pH METER
Pada prinsipnya pengukuran suatu pH adalah didasarkan pada potensial elektro kimia yang terjadi antara larutan yang terdapat didalam elektroda gelas (membrane gelas) yang telah diketahui dengan larutan yang terdapat diluar elektroda gelas yang tidak diketahui. Hal ini dikarenakan lapisan tipis dari gelembung kaca akan berinteraksi dengan ion hidrogen yang ukurannya relatif kecil dan aktif, elektroda gelas tersebut akan mengukur potensial elektrokimia dari ion hidrogen atau diistilahkan dengan potential of hidrogen. Untuk melengkapi sirkuit elektrik dibutuhkan suatu elektroda pembanding. Sebagai catatan, alat tersebut tidak mengukur arus tetapi hanya mengukur tegangan.
Skema Elektrode pH meter
pH meter akan mengukur potensial listrik (pada gambar alirannya searah jarum jam) antara merkuri Cloride (HgCl) pada elektroda pembanding dan potassium chloride (KCl) yang merupakan larutan didalam gelas electrode serta potensial antara larutan dan elektroda perak. Tetapi potensial antara sampel yang tidak diketahui dengan elektroda gelas dapat berubah tergantung sampelnya, oleh karena itu perlu dilakukan kalibrasi dengan menggunkan larutan yang equivalen yang lainya untuk menetapkan nilai dari pH.
Elektroda pembanding calomel terdiri dari tabung gelas yang berisi potassium kloride (KCl) yang merupakan elektrolit yang mana terjadi kontak dengan mercuri chloride (HgCl) diujung larutan KCl. Tabung gelas ini mudah pecah sehingga untuk menghubungkannya digunakan keramik berpori atau bahan sejenisnya. Elektroda semacam ini tidak mudah terkontaminasi oleh logam dan unsur natrium.
Elektroda gelas terdiri dari tabung kaca yang kokoh yang tersambung dengan gelembung kaca tipis yang. Didalamnya terdapat larutan KCl sebagai buffer pH 7. Elektroda perak yang ujungnya merupakan perak kloride (AgCl2) dihubungkan kedalam larutan tersebut. Untuk meminimalisir pengaruh electric yang gak diinginkan, alat tersebut dilindungi oleh suatu lapisan kertas pelindung yang biasanya terdapat dibagian dalam elektroda gelas.
Pada kebanyakan pH meter modern sudah dilengkapi dengan thermistor temperature yaitu suatu alat untuk mengkoreksi pengaruh temperature. Antara elektroda pembanding dengan elektroda gelas sudah disusun dalam satu kesatuan.
1. a sensing part of electrode, a bulb made from a specific glass
2. sometimes the electrode contains a small amount of AgCl precipitate inside the glass electrode
3. internal solution, usually 0.1M HCl for pH electrodes or 0.1M MeCl for pMe electrodes
4. internal electrode, usually silver chloride electrode or calomel electrode
5. body of electrode, made from non-conductive glass or plastics.
6. reference electrode, usually the same type as 4
7. junction with studied solution, usually made from ceramics or capillary with asbestos or quartz fiber.
CARA PENGGUNAAN
- Kalibrasi
Sebelum pH meter digunakan, pH meter harus dikalibrasi terlebih dahulu dengan menggunkan standar pH atau sering disebut buffer pH. Standard pH adalah larutan yang nilai pH-nya telah diketahui pada setiap perubahan suhu. Standar pH merupakan larutan buffer pH (penyangga pH) dimana nilainya relative konstan dan tidak mudah berubah.
Urutan kerja kalibrasi pH meter adalah :
1. Siapkan buffer pH 7 dan buffer pH 4
2. Buka penutup plastic elektroda
3. Bilas elektroda dengan air DI (De Ionisasi/ air bebas ion) dan keringkan dengan menggunakan kertas tisu
4. Nyalakan pH meter dengan menekan tombol ON/OFF.
5. Masukan elektroda kedalam larutan buffer pH 7
6. Tekan tombol CAL dua kali, putar elektroda agar larutan buffer homogeny
7. Biarkan beberapa saat sampai nilai yang tertera di disply tidak berubah
8. Tekan tombol CAL satu kali lagi, dan biarkan tulisan CAL pada disply berhenti berkedip
9. Angkat elektroda dari larutan buffer pH 7, kemudian bilas dengan air DI beberapa kali dan keringkan dengan kertas tisu
10. Masukan elektroda kedalam larutan buffer pH 4
11. Tekan tombol CAL dua kali, putar elektroda agar larutan buffer homogeny
12. Biarkan beberapa saat sampai nilai yang tertera di disply tidak berubah
13. Tekan tombol CAL satu kali lagi, dan biarkan tulisan CAL pada disply berhenti berkedip
14. Angkat elektroda dari larutan buffer pH 4, kemudian bilas dengan air DI beberapa kali dan keringkan dengan kertas tisu
15. Pada layar bagian bawah akan muncul angka 7 dan angka 4 yang menunjukan pH meter tersebut telah dikalibrasi dengan buffer pH 7 dan buffer pH 4
16. pH meter telah siap digunakan
- Pengukuran pH larutan
Setelah pH meter dikalibrasi maka pH meter tersebut sudah siap digunakan. Biasanya kalibrasi disarankan dilakukan setiap 1 kali sehari sebelum digunakan.
Cara pengukurannya adalah sebagai berikut
1. Siapkan sampel larutan yang akan di check pH-nya.
2. Jika larutan panas, biarkan larutan mendingin sampai dengan suhunya sama dengan suhu ketika kalibrasi. Contohnya jika kalibrasi dilakukan pada suhu 20°C maka pengukuran pun dilakukan pada suhu 20°C.
3. Buka penutup plastic elektroda, bilas dengan air DI dan keringkan dengan menggunakan kertas tisu.
4. Nyalakan pH meter dengan menekan tombol ON/OFF.
5. Masukan elektroda kedalam sampel, kumudian putar agar larutan homogeny.
6. Tekan tombol MEAS untuk memulai pengukuran, pada layar akan muncul tulisan HOLD yang kelapkelip.
7. Biarkan sampai tulisan HOLD pada layar berhenti kelap-kelip.
8. Nilai pH yang ditunjukan pada layar adalah nilai pH larutan yang di check
9. Matikan pH meter dengan menekan kembali tombol ON/OFF
 PEMELIHARAAN pH METER
pH meter harus dilakukan perawatan berkala untuk menjaga umur pakai dari alat tersebut. Pemeliharaannya meliputi :
a. Batere, penggantian batere dilakukan jika pada layar muncul tulisan low battery
b. Elektroda, pembersihan elektroda bisa dilakukan berkala setiap minimal satu minggu satu kali. Pembersihannya menggunakan larutan HCL 0.1N (encer) dengan cara direndam selama 30 menit, kemudian dibersihkan dengan air DI.
c. Penyimpanan, ketika tidak dipakai, elektroda terutama bagian gelembung gelasnya harus selalu berada pada keadaan lembab. Oleh karena itu penyimpanan elektroda disarankan selalu direndam dengan menggunkan air DI. Penyimpanan pada posisi kering akan menyebabkan membrane gelas yang terdapat pada gelembung elektroda akan mudah rusak dan pembacaannya tidak akurat.
d. Suhu penyimpan. Ketika disimpan, pH meter tidak boleh berada pada suhu ruangan yang panas karena akan menyebabkan sensor suhu pada alat cepat rusak.





CENTRIFUGE DAN VISCKOMETER

Anggota Kelompok :
1. Rela Religia A
2. Rima Sundari
3. Ririn Puji A
4. Risti Intan P
 
Centrifuge


Centrifuge adalah alat untuk memutar sampel pada kecepatan tinggi, memaksa partikel yang lebih berat terkumpul ke dasar tabung centrifuge. Pemakaian centrifuge yang paling sering adalah untuk pemisahan komponen sel darah dari cairannya sehingga cairannya bisa dipakai untuk pemeriksaan.

Ada beberapa klasifikasi centrifuge menurut jenisnya, antara lain :
1. General Purpose Centrifuge

Model biasanya adalah tabletop (bisa diletakkan di atas meja) yang dirancang untuk pemisahan sampel urine, serum atau cairan lain dari bahan padat yang tidak larut. Centrifuge ini biasanya berkecepatan 0-3000 rpm, dan bisa menampung sampel dari 5-100 ml











2.  Micro Centrifuge

Atau disebut juga microfuges, memutar microtubes khusus pada kecepatan tinggi. Volume micotubes berkisar 0.5-2.0 ml.














3.  Speciality Centrifuge

Yaitu centrifuge yang dipakai untuk keperluan yang lebih spesifik. Seperti microhematocrit centrifuges dan blood bank centrifuges, yang dirancang untuk pemakaian spesifik di laboratorium klinik. Microhematocrit centrifuge adalah merupakan variasi dari microcentrifuge yang dapat menampung sampel kapiler untuk pengukuran volume hematocrit pack cell, sedangkan Blood Bank Centrifuge adalah centrifuge yang dipakai di bank darah dan serologi yang dirancang untuk memisahkan sampel serologis dalam tabung.

Jenis lain adalah centrifuge berkecepatan tinggi, yaitu ultracentrifuges dan refrigerated centrifuges. Centrifuge berkecepatan tinggi berputar pada kecepatan 0-20.000 rpm dan ultracentrifuge berputar pada kecepatan di atas 50.000 rpm. Kebanyakan centrifuge ini dilengkapi dengan sistem pendinginan untuk menjaga sampel tetap dingin selama sentrifugasi. Centrifuge ini lazim dipakai di laboratorium penelitian.




Viskometer

Viskometer adalah suatu cara untuk menyatakan berapa daya tahan dari aliran yang diberikan oleh suatu cairan. Kebanyakan viscometer mengukur kecepatan dari suatu cairan mengalir melalui pipa gelas (gelas kapiler), bila cairan itu mengalir cepat maka viskositas cairan itu rendah (misalnya cair) dan bila cairan itu mengalir lambat maka dikatakan viskositasnya tinggi (misalnya madu). Viskositas dapat diukur dengan mengukur laju aliran cairan yang melalui tabung berbentuk silinder. Ini merupakan salah satu cara yang paling mudah dan dapat digunakan baik untuk cairan maupun gas.
Ada beberapa tipe viskometer yang biasa digunakan antara lain :
1.    Viskometer kapiler / Ostwald


Viskositas dari cairan yang ditentukan dengan mengukur waktu yang dibutuhkan bagi cairan tersebut untuk lewat antara 2 tanda ketika mengalir karena gravitasi melalui viskometer Ostwald. Waktu alir dari cairan yang diuji dibandingkan dengan waktu yang dibutuhkan bagi suatu zat yang viskositasnya sudah diketahui (biasanya air) untuk lewat 2 tanda tersebut (Moechtar,1990).
 















2. Viskometer Hoppler

Berdasarkan hukum Stokes pada kecepatan bola maksimum, terjadi keseimbangan sehingga gaya gesek = gaya berat – gaya archimides. Prinsip kerjanya adalah menggelindingkan bola ( yang terbuat dari kaca ) melalui tabung gelas yang berisi zat cair yang diselidiki. Kecepatan jatuhnya bola merupakan fungsi dari harga resiprok sampel (Moechtar,1990).
 









3. Viskometer Cup dan Bob

Prinsip kerjanya sample digeser dalam ruangan antaradinding luar dari bob dan dinding dalam dari cup dimana bob masuk persis ditengah-tengah. Kelemahan viscometer ini adalah terjadinya aliran sumbat yang disebabkan geseran yang tinggi di sepanjangkeliling bagian tube sehingga menyebabkan penurunan konsentrasi. Penurunan konsentras ini menyebabkab bagian tengah zat yang ditekan keluar memadat. Hal ini disebut aliran sumbat (Moechtar,1990).
 






4.Viskometer Cone dan Plate

Cara pemakaiannya adalah sampel ditempatkan ditengah-tengah papan, kemudian dinaikkan hingga posisi di bawah kerucut. Kerucut digerakkan oleh motor dengan bermacam kecepatan dan sampelnya digeser di dalam ruang semitransparan yang diam dan kemudian kerucut yang berputar (Moechtar,1990).

 




NERACA

Dipostingkan oleh :
1.Rela Religia
2.Rima Sundari
3.Ririn Puji
4.Risty Intan





Neraca Ohaus
Neraca ini berguna untuk mengukur massa benda atau logam dalam praktek laboratorium. Kapasitas beban
yang ditimbang dengan menggunakan neraca ini adalah311 gram. Batas ketelitian neraca Ohauss yaitu 0,1 gram
Neraca Ohauss  terdiri atas tiga batang skala. Batang pertama berskala ratusan
gram, batang kedua berskala puluhan gram, dan batang ketiga berskala satuan gram. Neraca ini mempunyai ketelitian hingga 0,1 g. Benda yang akan ditimbang diletakkan di atas
piringan. Setelah beban geser disetimbangkan dengan benda, massa benda dapat dibaca pada skala neraca




NERACA DIGITAL/ELEKTRONIK

Fungsi
 Dalam kehidupan sehari-hari, massa sering diartikan sebagai berat, tetapi dalam tinjauan fisika keduabesaran tersebut berbeda. Massa tidak dipengaruhi gravitasi, sedangkan berat dipengaruhi olehgravitasi. Fungsi dari neraca elektrik maupun bukan elektrik secara umum adalah sebagai alat pengukur massa. Kegunaan neraca ini tergantung dari skala dari neraca tersebut misal neraca/timbangan elektrikyang ada di pasar swalayan dengan yang di laboratorium tentu sensitivitas dan skala neracanya jauhberbeda.
Proses

Pengukuran
 Secara umum proses meninbang dengan neraca elektronik/digital adalah:
1. Pastikan bahwa timbangan sudah menyala.
2. Pastikan timbangan menunjukkan angka ´nol´( jika tidak perlu di koreksi).
3. Letakakan benda yang massanya akan diukur pada piringan tempat benda.
4. Baca skala yang tertera pada display digital sesuai skala satuan timbangan tersebut.
5. Untuk pengukuran yang sensitivitasnya tinggi perlu menunggu 30 menit, karena hanya dapat bekerjapada batas temperatur yang ditetapkan.




Neraca Lengan Gantung
Neraca ini berguna untuk menentukan massa benda, yang cara kerjanya dengan menggeser beban pemberat di sepanjan batang.



Neraca Analitis Duan Lengan
Neraca ini berguna untuk mengukur massa benda, misalnya emas, batu, kristal benda, dan lain lain. Batas ketelitian neraca analitis dua lengan yanitu 0,1 gram.




terimakasih